

 Navigation

 	
 index

 	
 next |

 	Splicer 0 documentation

Documentation

This documentation has the following resources:

	Overview
	Welcome

	Installation

	Use
	The Basics

	Querying Local Data

	Creating Views

	Adding User Defined Functions

	Querying

	Examples
	Monitoring Amazon Useage

	Servers
	S3 Server

	Dictionary Server

	Local File Server

	Contributing
	Contributing to Splicer

	Glossary
	Dataset

	Server

	Relation

	Table

	View

	Schema

	Field

	ETL

	User Defined Functions (UDF)

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

Overview

Contents:

	Welcome

	Installation

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Overview

Welcome

splicer, the In Place Data Querying Library, is a python module
for working with data from disparate sources using commands to those
familliar with SQL. It aims to make quick one off queries and
ETL scripts more declarative rather than procedural.

splicer enables:

	Analysts to create Dataset linking various
foreign tables together along with User Defined Functions (UDF). Once defind the
datasets can be queried via SQL Select statements to create new Views
of the Data.

	Extension Developers to create extensions that make various data sources
REST endpoints, log files, NoSQL Servers, traditional Databases,
CSV Files to behave like tables.

splicer will take advanatage of these various sources capabilities where
appropiate and will compensate for sources that lack basic
features.

For example if a database supports joins and you want to query
two tables within that database, splicer will have that system
perform the join for you. If however the your worknig with a less
sophisticated source, like a plain files, splicer will perform the
operations for you locally.

Enough reading! Try it out!

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Overview

Installation

Splicer and it’s add-ons are distributed via PyPI Python’s package
index. The simpelest way to install splicer is to use a command
like pip.

$ pip install splicer splicer_console

One of the main motivatinos of splicer is to make sharing data analysis
and ETL scripts easy between individuals. Therefore we recomend you setup
your project in a manner similar to modern python web apps.

Assuming you have git, pip and virtualenv installed this is how you would
typically setup a project to use Splicer and it’s add-ons.

$ mkdir myproject
$ cd myproject
$ git init
$ cat > .gitignore <<-EOF
bin/
include/
lib/
*.py[co]
EOF

$ virtualenv .
$ source bin/activate
$ cat > requirements.txt <<-EOF
splicer>=0.1.0
splicer_console>=0.1.0
$ pip install -r requirments.txt

Then create a python script similar to one described in The Basics and
publish this git repository the way you normally would (via github etc...)

If you’re a member of the team then working a splicer project would look something
like this.

$ git clone git@github.com:<your org>/myproject.git
$ cd myproject
$ virtualenv .
$ source bin/activate
$ pip install -r requirments.txt
$ python ./project.py

That’s all you need to install splicer form scratch or get some one elses project
up and running, so why not learn how to set up a dataset and query it in
The Basics

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

Use

Contents:

	The Basics

	Querying Local Data

	Creating Views

	Adding User Defined Functions

	Querying

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Use

The Basics

splicer blends data from multiple sources together and
lets you query it, as if it were part of one giant,
read only database system. Here’s the typical usage pattern.

Start off by creating a python file, in a directory created in
a manner described in Installation. Call the file myproject.py.

Inside we’ll create a Dataset which holds a collection of
Servers, Tables,
Views and User Defined Functions.

Create a DataSet

Add the following code to import splicer and create a Dataset.

import splicer
dataset = splicer.DataSet()

Add a Server

Servers provide tables and other
relations to the dataset.

Note

Since splicer is based on Relational
Algebra we’ll often use the name relation
interchangeablly with tables in this doc.

Let’s modify the code to add a DictServer which lets us
query a list of dictionaries entirely from memmory.

import splicer
from splicer.servers.dict_server import DictServer

dataset = splicer.DataSet()

dataset.add_server(DictServer(
 users = [
 dict(username="tom", customer_id=123, full_name="Tom Talbert", active=True),
 dict(username="sally", customer_id=456, full_name="Sally Sanders", active=False),
 dict(username="marry",customer_id=789, full_name="Marry Mabel", active=True),
 dict(username="john", customer_id=999, full_name="John Jonas", active=False)
]
))

The arguments to the server class are unique to the
implmentation of each server. For instance
if you were talking to a Postgres server you’d simply pass
in your login credentials. In this case we pass in a keyword
argument ‘users’ which is a list of dictionaries. This particular
Server will use that data to expose a relation named users

Query the dataset

A quick and dirty way to interact with data is to run your
script using the python -i like so:

$ python -i myproject.py
>>>

This will execute your script and leave you in python’s
interactive interpreter where you can, drum roll please...
interact with your dataset.

We can query using two different forms. The first is to use
the query() method which should be familiar to anyone
who has ever worked with a SQL database. It takes a SQL
select statement and returns a Query object.

>>> query = dataset.query('select * from users')

Within the interpreter you introspect the query by simply
typing it’s name and hitting enter.

>>> query
Relation user:
 username:STRING
 customer_id:123
 full_name:STRING
 active:BOOLEAN

This displays the ref:schema <schema_def> of the underlying data that will be returned
when the query is executed. To execute the query simply iterate it.

>>> for user in query:
... print user.username, user.full_name, user.active

Which produces the following output in your terminal.

tom Tom Talbert True
sally Sally Sanders False
marry Mary Mabel True
john John Jonas False

The second method of querying uses the method chaing style
which is useful for building up a query programtically.

>>> for user in dataset.select('*').frm('users'):
... print user.username, user.full_name, user.active

Which produces the same output.

Filtering using a query

splicer goal is to provide the full range of declarative power that
you get with a normal SQL select method. Which means you can do things
like filter with where and having clauses, order on columns, group and
so on.

query = dataset.query('''
SELECT *
FROM users
WHERE active = TRUE
''')

for user in query:
 print user.username, user.full_name, user.active

tom Tom Talbert True
marry Mary Mabel True

Or

query = dataset.query('''
SELECT active, count(*)
FROM users
GROUP BY active
''')

for active_count in query:
 print active_count.active, active_count.count

TRUE 2
FALSE 2

Adding additional tables

splicer really shines when it’s time to work with data in
disparate locations. For example maybe you have some data in an
Amazon S3 Bucket. Using the splicer Server for S3 we can access
data as if it were tables.

Thes S3 Server provides a slew of options for mapping
data in Amazon S3 into tables from either the key names or the
contents of the blob while avoiding costly network round
trips. Look in the server section for more details

Let’s pretend we have a bunch of customer specific data
in csv files in S3 like so.

s3://mybucket/myfoo/dt=2012-05-31/customer_id=123/blob1.csv
s3://mybucket/myfoo/dt=2012-06-01/customer_id=123/blob2.csv
s3://mybucket/myfoo/dt=2012-05-31/customer_id=546/blob3.csv

Notice that we’ve followed the Hive convention of encoding
partition information in the key. For example We’ve uploaded
the data by date and customer_id. You’ll see that the date is
incoprorated in the url of thet data as dt=<date stirng> and
customer_id=<number>.

You can then modify your script to setup add an S3 server

import splicer
from splicer.servers.dict_server import DictServer
from splicer_aws import S3

dataset = splicer.DataSet()

dataset.add_server(Dictionaries(
 users = [
 dict(username="tom", customer_id=123, full_name="Tom Talbert", active=True),
 dict(username="sally", customer_id=456, full_name="Sally Sanders", active=False),
 dict(username="marry",customer_id=789, full_name="Marry Mabel", active=True),
 dict(username="john", customer_id=999, full_name="John Jonas", active=False)
]
))

dataset.add_server(S3(
 access_key="<YOUR AWS KEY>",
 access_secret="<AWS SECRET>"
))

Now you can query your “table”

query = dataset.query('''
 SELECT DISTINCT dt, customer_id
 FROM 's3://mybucket/myfoo/'
''')

for log in query:
 print log.dt, log.customer_id

Notice we’re using the DISTINCT word and only querying on the values
thate were encoded in the urls of the blobs. With that particular
combination the S3 server is smart enough to return the values
interpreted from the Amazon S3 keys rather than fetching the
entire blobs, which could be a lengthy process especially if
the blobs are large.

Had we not used DISTINCT the S3 server would have been forced to download
each blob interpret it into records and then emmit one (dt, customer_id)
for each record found.

Note

At the time of this writing, the splicer_aws extension has not
been released. However it should be in the not to distant future.

Creating Views

Specifying the url for an S3 table in the from clause is a pain
and maybe we want to reuse this query multiple times. splicer
provides views for that purpose. Simply call
dataset.create_view(name, query) like so

dataset.create_view(
 'billing',
 '''
 SELECT DISTINCT dt, customer_id
 FROM 's3://mybucket/myfoo/'
 '''
)

Now we can perform queries using the name billing

query = dataset.query('''
 SELECT *
 FROM billing
''')

Joining Data

And here’s how easy it is to work with data in two seperate tables.
This query joins users to billing, counts how many customer records
there are.

query = dataset.query('''
 SELECT full_name, count(dt)
 FROM users join billing on users.customer_id = billing.customer_id
 GROUP BY full_name
''')

for record_counts in query:
 print record_counts.full_name, record_counts.count

Tom Talbert 2
Sally Sanders 1

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Use

Querying Local Data

Splicer works with all sorts of data sources running
the gammit from web APIs, traditional traditional databases,
and NoSQL servers. Most of these capabilities are distributed
as Splicer add-ons so that the main library can be installed
with as few dependencies as possible. Out of the box our goal
is to support librariers

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Use

Creating Views

dataset.create_view(
 'billing',
 '''
 SELECT DISTINCT dt, customer_id
 FROM 's3://mybucket/myfoo/'
 '''
)

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Use

Adding User Defined Functions

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Use

Querying

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

Examples

Contents:

	Monitoring Amazon Useage

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Examples

Monitoring Amazon Useage

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

Servers

Contents:

	S3 Server

	Dictionary Server

	Local File Server

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Servers

S3 Server

Provides a method for interpreting data in Amazon S3 as if it were tables.
Data can be encoded in both the key and blobs.

S3 itself is a simple Key/Value store. It simply stores
a blob of data associated with a unique name. It makes
no attempt to interpret the data and the only quering
capabilities it provides is listing keys and fetching
specific blobs. Consequently if you need to interpret
a blob you need to fetch it’s contents over the network
and interpret it locally.

The S3 server has cap

It’s capabale of storing
millions of records, but it makes no attempt to interpret the
data stored in the value. That’s typically an excercise left
to the

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Servers

Dictionary Server

Provides a method for querying one or more lists of dictionaries
as if they were tables.

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Servers

Local File Server

Provides a method for converting content in local files into tabular data.

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

Contributing

	Contributing to Splicer

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Contributing

Contributing to Splicer

Want to hack on Splicer? Awesome! The repository includes all the instructions you need to get started [https://github.com/trivio/splicer/blob/master/CONTRIBUTING.md].

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

Glossary

Definitions of terms used in Splicer documentation.

Contents:

	Dataset

	Server

	Relation

	Table

	View

	Schema

	Field

	ETL

	User Defined Functions (UDF)

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Glossary

Dataset

A collection of foreign tables, views and user defined functions.

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Glossary

Server

An object instantiated per process to provide the foreign data

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Glossary

Relation

Data represented as rows and columns.

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Glossary

Table

Data represented as rows and columns.

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Glossary

View

A view is a saved query that can be used in the from clause of another
query.

(see also Creating Views)

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Glossary

Schema

Every Relation is associated with exactly one Schema, which
includes the metada, (fields, name, etc...)
about the relation.

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Glossary

Field

A field reperesents one column on a relation. It has a name,
type (INTEGER, FLOAT, STRING, DATETIME, BOOLEAN, RECORD) and
a mode which indicates wether the field repeats, is nullable
or required.

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Splicer 0 documentation

 	Glossary

ETL

ETL stands for Extract, Transform, Load. It’s a term most
commonly used in the data warehousing world. If you have
ever written a script that parses a file (Extract); cleaned
up the values in it, perhaps fixing up the date strings, (Transform)
and then inserted the results into another database (Load) then
you’ve written an ETL script.

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	Splicer 0 documentation

 	Glossary

User Defined Functions (UDF)

splicer provides sever functions for manipulating data
while querying it. In addition you can write your own
procedures in python to use in your queries. These are
known as User Defined Functions.

splicer provides 3 kinds

	Column functions for transforming values of a row during querying.

	Aggregate functions for summarizing row data using the group by clause

	Relational functinos for producing a set of rows that can be used as if
it were another relation (table or view) in a FROM clause.

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	Splicer 0 documentation

Index

 Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Splicer 0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, triv.io.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

